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第一章 线性空间及线性算子

1.1 R3 空间向量分析

1.1.1 向量概念

• 标积：A ·B = |A||B| cos θ
A ·B = (Aiei ) · (Bjej)

= AiBjei · ej
= AiBjδij

• 矢积：A×B = e|A||B| sin θ

对三阶行列式，引入 Levi-Civita 符号：∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= εijkaibjck

R3 中的向量积可写成

A×B = eiεijkAjBk

或写成分量的表示形式

(A×B)i = εijkAjBk

• 矢量坐标分量表示法: A = Axi+Ayj +Azk = Aiêi

1.1.2 R3 空间向量代数

1. 运算规则符号：

(a) Einstein 求和约定：A = Aiei

(b) Kronecker � 符号：

δij =

0 if i ̸= j

1 if i = j

(c) Levi-Civita 符号：

ϵijk =


1 (i, j, k) 是偶排列

−1 (i, j, k) 是奇排列

0 (i, j, k) 有相同者
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1.1 R3 空间向量分析 第一章 线性空间及线性算子

Theorem 1.1.1 单位全反对称张量乘积公式：

ϵijkϵimn = δjmδkn − δjnδkm

证明：注意到，Levi-Civita 符号可由单位向量混合积得到：

ϵijk = [eiejek] =

∣∣∣∣∣∣∣∣
ei1 ei2 ei3

ej1 ej2 ej3

ek1 ek2 ek3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣
下面考虑一般形式

ϵijkϵlmn =

∣∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
δl1 δl2 δl3

δm1 δm2 δm3

δn1 δn2 δn3

∣∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣
l→i
====

∣∣∣∣∣∣∣∣
3 δim δin

δji δjm δjn

δki δkm δkn

∣∣∣∣∣∣∣∣
= 3(δjmδkn − δjnδkm)− δim(δjiδkn − δjnδki) + δin(δjiδkm − δjmδki)

= δjmδkn − δjnδkm

2. R3 空间向量运算

(a) 加法：A+B = (A1 +B1)e1 + (A2 +B2)e2 + (A3 +B3)e3 = (Ai +Bi)ei

(b) 数乘：αA = αA1e1 + αA2e2 + αA3e3 = αAiei

(c) 标积：A ·B = A1B1 +A2B2 +A3B3 = AiBi

(d) 矢积：A×B = ϵijkeiAjBk

1.1.3 R3 空间矢量分析

Definition 1.1.1 nabla 算子/哈密顿 (Hamilton) 算符

∇ = ei∂i = ei
∂

∂xi

Definition 1.1.2 Laplace 算符

∇2 = ∇ · ∇ = (ei∂i) · (ej∂j) = δij∂i∂j = ∂i∂i

Definition 1.1.3 标量场的梯度
grad φ = ∇φ = ei∂iφ

Definition 1.1.4 向量场的散度
divA = ∇ ·A = ∂iAi

Definition 1.1.5 向量场的旋度

CurlA = ∇×A = εijkei∂jAk

Theorem 1.1.2 Gauss 公式 ˆ
∂V

A · dσ =

ˆ
V

∇ ·AdV
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第一章 线性空间及线性算子 1.1 R3 空间向量分析

Lemma 1.1.1 Green 公式ˆ
∂V

ψ∇ φ · dσ =

ˆ
∂V

ψ
∂φ

∂n
dσ =

ˆ
V

(ψ∇2φ+∇ψ · ∇φ)dV

ˆ
∂V

(ψ∇φ− φ∇ψ) · dσ =

ˆ
V

(ψ∇2φ− φ∇2ψ)dV

Theorem 1.1.3 Stokes 公式 ˛
∂S

A · dl =
ˆ
S

(∇× A) · dσ

Lemma 1.1.2 调和函数的两个基本性质：ˆ
∂Ω

∂u

∂n
dΩ = 0

u(x0, y0, z0) =
1

4πR2

ˆ
SR

udσ

Proof 1.1.1 由 Gauss 公式导出 Green（格林）公式
对于定义在体积 V 及其边界 aV 上的两个标量场 ψ (x) , φ (x) ，有 Green 公式，它是 Gauss 公

式的直接结果，即

ˆ
aV

ψ ∇ φ · dσ =

ˆ
ν

∇ · ( ψ ∇ φ ) dV

=

ˆ
ν

( ψ ∇2φ + ∇ ψ · ∇ φ ) dV

若 n 为 dσ 上的单位法向量，则

∇ φ · dσ = ∇ φ · ndσ =
∂φ

∂n
dσ

Green 公式可表为：
ˆ
∂V

ψ
∂φ

∂n
dσ =

ˆ
V

( ψ ∇2φ + ∇ ψ · ∇ φ ) dV

Green 公式的另一种表述为
ˆ
sν

(ψ ∇ φ− φ∇ ψ ) · dσ =

ˆ
ν

(ψ ∇2φ− φ∇2ψ ) dV

1.1.4 R3 空间向量分析的重要公式

1. ∇ · r = 3

2. ∇× r = 0

3. ∇(φ+ ψ) = ∇φ+∇ψ
4. ∇(φψ) = φ∇ψ + ψ∇φ
5. ∇ · (A+B) = ∇ ·A+∇ ·B
6. ∇× (A+B) = ∇×A+∇×B

7. ∇ · (φA) = A · (∇φ) + φ∇ ·A
8. ∇× (φA) = A× (∇φ) + φ∇ ·A
9. ∇ · (A×B) = B · (∇×A)−A · (∇×B)

10. ∇× (A×B) = (B · ∇)A−B(∇ ·A)− (A · ∇)B +A(∇ ·B)
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1.1 R3 空间向量分析 第一章 线性空间及线性算子

11. ∇(A ·B) = (B · ∇)A+ (A · ∇)B +B ×∇×A+A×∇×B

12. ∇×∇φ = 0

13. ∇ · (∇×A) = 0

14. ∇×∇× A = ∇(∇ ·A)−∇2A

15. (∇×A)×A = (A · ∇)A− 1
2
∇A2.

12 式说明，对一个纯标量势场，其梯度场是个无旋场，即其梯度场的旋度为零；13 式说明，对
一个纯旋量场，其散度场为零，即纯旋量场是个无散度的场.

Proof 1.1.2 证明 14

∇× (∇×A) = εijkei∂j

(
∇×A

)
k

= eiεijk∂jεklm∂lAm

= eiεkijεklm∂j∂lAm

= ei(δilδjm − δimδjl)∂j∂lAm

= ei∂i∂jAj − ei∂j∂jAi

= ∇ (∇ ·A)−∇2A

∇2 为 Laplace 算子∇2 = ∇ · ∇ = ∂i∂i

Example 1.1.1 若 φ(r) 为 R3 空间中的标量函数，A(r) 和 B(r) 为此空间中的向量函数，请证明：

(1)∇ · (φA) = A · (∇φ) + φ∇ ·A;

(2)∇× (φA) = φ∇×A−A× (∇φ);

(3)∇× (A×B) = (B · ∇)A−B(∇ ·A)− (A · ∇)B +A(∇ ·B);

(4)∇(A ·B) = (B · ∇)A+ (A · ∇)B +B ×∇×A+A×∇×B.

Proof 1.1.3

(3)∇× (A×B)

= eiεijk∂j (A×B)k = eεijki∂j (εkmnambn)

= eiεijkεkmn∂j (ambn) = ei (δimδjn − δinδjm) ∂j (ambn)

= eiδimδjn (∂jam) bn − eiδinδjm (∂jam) bn + eiδimδjnam (∂jbn)− eiδinδjmam (∂jbn)

= eibj (∂jai)− ei (∂jaj) bi + eiai (∂jbj)− eiaj (∂jbi)

= (bj∂j) aiei − (∂jaj) biei + eiai (∂jbj)− (aj∂j) biei

=
(
B · ∇

)
A−

(
∇ ·A

)
B +A

(
∇ ·B

)
−
(
A · ∇

)
B
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第一章 线性空间及线性算子 1.1 R3 空间向量分析

(4) 由等式右边往左边证较为简单, 等式右边为(
B · ∇

)
A+

(
A · ∇

)
B +B ×∇×A+A×∇×B

=
(
bi∂i

)
A+

(
ai∂i

)
B + eiεijkbj

(
∇×A

)
k
+ eiεijkaj

(
∇×B

)
k

= bi∂iA+ ai∂iB + eiεijkεklmbj∂lam + eiεijkεklmaj∂lbm

= bi∂iA+ ai∂iB + ei (δilδjm − δimδjl) bj∂lam + ei (δilδjm − δimδjl) aj∂lbm

= bi∂iajej + ai∂ibjej + eibj∂iaj − eibj∂jai + eiaj∂ibj − eiaj∂jb

= eibj∂iaj + eiaj∂ibj

= bj∇aj + aj∇bj
= ∇(ajbj)

= ∇(A ·B)

Example 1.1.2 若刚体以定角速度 ω 转动，有一粒子固定于刚体以速度 ν 运动，求证

∇× ν = 2ω

(提示：由 ν = νc + ω × r , 取质心 c 为参考点，建立坐标系，νc = 0)
证: 取质心 c 为参考点，建立坐标系，则在此坐标系中 νc = 0, 有

∇× ν = ∇× (ω × r)

= eiεijk∂j (ω × r)k

= eiεijkεklm∂j (ωlxm)

= ei (δilδjm − δimδjl) [(∂jωl)xm + ωl∂jxm]

= ei (ωi∂jxj − ωj∂jxi)

= ω
(
∇ · r

)
− eiωjδij = 3ω − ω

= 2ω

其中，ωl 为常数，故 ∂jωl = 0, 并用到 ∇ · r = 3.

Example 1.1.3 在 R3 空间中，对于定义在单连通区域 Ω 上的向量场 A(r), 若 A 在 Ω 的边界 ∂Ω

上的法向值完全确定，且 A 在 Ω 上的散度和旋度存在

∇ ·A = q

∇×A = H

请证明：在 Ω 上这样的向量场 A 是唯一的. 这一结论被称为亥姆霍兹 (Helmholtz) 定理.

证: 设 B 满足 ∇ ·B = q ,∇×B = H , 且 B 在 ∂Ω 上法向取值完全与 A 相同. 又
设 W = A−B , 则有

∇·W = q − q = 0, ∇×W = H −H = 0

则可定义势函数 φ(r),W = −∇φ , 此 φ(r) 满足拉普拉斯方程

∇2φ(r) = 0
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1.2 R3 空间中曲线坐标系中的矢量分析 第一章 线性空间及线性算子

由格林 (Green) 公式

ˆ
∂Ω

u∇ν · dσ =

ˆ
Ω

u∇2νdΩ+

ˆ
Ω

∇u · ∇νdΩ

取 u = ν = φ , 由于 W = −∇φ , 且 A,B 在 ∂Ω 上法向的值相同，故 W 在 ∂Ω 上法向的值为

零，即 ∇φ·dσ = 0, 有
ˆ
Ω

∇φ · ∇φdΩ =

ˆ
Ω

W ·WdΩ =

ˆ
Ω

|W |2 dΩ = 0

故在 Ω 上 W = 0, 即 B = A

Example 1.1.4 (杨书1.14) 有一物理体系，它由三个向量场 E,H, A 和一个实标量场 V 来描述，

并且 E,H, A 和 V 满足如下关系：

∇ · E = −µ2V

E =
∂A

∂t
−∇V

H = ∇×A

∇×H =
∂E

∂t
− µ2A

其中，µ 为正的常数. 求证：
∇ ·A+

∂V

∂t
= 0 ;

(2) ∇2 · V − µ2V + ∂2V
∂t2

= 0 ;
时，则在 ϱ 中 V = 0.

(3) 当我们考虑在区域 Ω 中，V 与时间无关，且在 Ω 的边界 ∂Ω 上有 V |∂Ω = 0

1.

1.2 R3 空间中曲线坐标系中的矢量分析

1.2.1 R3 空间中的曲线系

Definition 1.2.1 在 Cartesian 坐标系中，空间一点坐标可由三个独立坐标参数 (u1, u2, u3) 描述，

且与 Cartesian 坐标参数 (x1, x2, x3) 存在单值的函数变换关系，则坐标参数 (u1, u2, u3) 构成 R3 空

间中的曲线系。如果此曲线系下每一点都有过此点的三条坐标曲线切向量相互正交，则称为正交曲

线系。令其过渡矩阵等于一常向量，就得到用 (x1, x2, x3) 表示的三个坐标曲面：

u1(x1, x2, x3) = c1u
2(x1, x2, x3) = c2u

3(x1, x2, x3) = c3

其中，每两个坐标曲面相交而成坐标曲线。

1.2.2 曲线系中的度量

Definition 1.2.2 度量系数
空间曲线的弧微分，有如下的公式

ds =
√

dx2 + dy2 + dz2
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第一章 线性空间及线性算子 1.2 R3 空间中曲线坐标系中的矢量分析

只研究坐标曲线 u1 上的变化，则

dx =
∂x

∂u1
du1 +

∂x

∂u2
du2 +

∂x

∂u3
du3 =

∂x

∂u1
du1

dy =
∂y

∂u1
du1, dz = ∂z

∂u1
du1.

因此

ds1 =

√(
∂x

∂u1

)2

+

(
∂y

∂u1

)2

+

(
∂z

∂u1

)2

du1.

令

hi =

√(
∂x

∂ui

)2

+

(
∂y

∂ui

)2

+

(
∂z

∂ui

)2

dsi = hidui

hi 即被称为拉梅系数。
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1.2 R3 空间中曲线坐标系中的矢量分析 第一章 线性空间及线性算子
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第一章 线性空间及线性算子 1.2 R3 空间中曲线坐标系中的矢量分析

对正交曲线系有：

gij =
∂xk

∂ui

∂xk

∂uj

gij =


gii i = j

0 i ̸= j

Definition 1.2.3 度量分量 正交曲线系的度量分量是度量系数的根：

hi =
√
gii

1. 一般正交曲线系
(1) 线元：

ds2 = gijduiduj = g11(du1)2 + g22(du2)2 + g33(du3)2

(2) 面元：
dσij = dsidsj = hihjduiduj

(3) 体元：
dV = dsids2ds3 = h1h2h3du1du2du3

2. 柱坐标 (ρ, φ, z)

(1) 度量：
gρρ = 1, gφφ = ρ2, gzz = 1

hρ = 1, hφ = ρ, hz = 1

(2) 线元：
ds2 = dρ2 + ρ2dφ2 + dz2

(3) 面元：
dσρφ = ρdρdφ, dσρz = dρdz, dσφz = ρdφdz

(4) 体元：
dV = ρdρdφdz

3. 球坐标 (r, θ, φ)

(1) 度量：
grr = 1, gθθ = r2, gφφ = r2 sin2 θ

hr = 1, hθ = r, hφ = r sin θ

(2) 线元：
ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2

(3) 面元：
dσrθ = rdrdθ, dσrφ = r sin θdrdφ, dσθφ = r2 sin θdθdφ

(4) 体元：
dV = r2 sin θdrdθdφ

11



1.2 R3 空间中曲线坐标系中的矢量分析 第一章 线性空间及线性算子

1.2.3 曲线系中的向量分析

标量场梯度表达式

梯度定义为 (∇ϕ)i · dsi = dψ

又由 dsi = hidui,dψ = ∂ψ
∂ui

dui

得到曲线坐标系下标量场梯度表达式：

(∇ϕ)i =
1

hi

∂ψ

∂ui
(i 不求和)

∇ 表达式为:
∇ =

1

h1

∂

∂u1
e1 +

1

h2

∂

∂u2
e2 +

1

h3

∂

∂u3
e3

取 ψ 为坐标函数 ui, 由 ∂ui

∂uj
= δij 得：

∇uj =
1

uj
ej(j 不求和)

坐标基在直角坐标系下表达式

法一

由上式可得

ej = hj∇uj

在笛卡尔坐标系下表达梯度，即可得到坐标基在直角坐标系下表达式。

以球坐标系为例：

1. r =
√
x2 + y2 + z2

梯度 ∇r =
(
∂r
∂x
, ∂r
∂y
, ∂r
∂z

)
∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

∂r

∂z
=
z

r

因此：

∇r = x

r
x̂+

y

r
ŷ +

z

r
ẑ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ

er = hr∇r = 1 · (sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ) = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ

2. θ = arccos
(
z
r

)
∂θ

∂x
= − x

r2
1√

1−
(
z
r

)2 = − x

r2
1

sin θ = − x

r sin θ

∂θ

∂y
= − y

r sin θ
∂θ

∂z
=

1

r

1√
1−

(
z
r

)2 =
1

r sin θ

因此：

∇θ = − x

r sin θ x̂− y

r sin θ ŷ +
1

r sin θ ẑ = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ

eθ = hθ∇θ = r · (cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ) = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ
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第一章 线性空间及线性算子 1.2 R3 空间中曲线坐标系中的矢量分析

3. ϕ = arctan
(
y
x

)
∂ϕ

∂x
= − y

x2 + y2
= − y

r2 sin2 θ

∂ϕ

∂y
=

x

x2 + y2
=

x

r2 sin2 θ

∂ϕ

∂z
= 0

因此：

∇ϕ = − y

r2 sin2 θ
x̂+

x

r2 sin2 θ
ŷ = − sinϕx̂+ cosϕŷ

eϕ = hϕ∇ϕ = r sin θ · (− sinϕx̂+ cosϕŷ) = − sinϕx̂+ cosϕŷ

柱坐标系下同理。

法二

似乎更易理解。

由此整理柱坐标下基矢：

球坐标：

13



1.2 R3 空间中曲线坐标系中的矢量分析 第一章 线性空间及线性算子

散度与旋度表达式

除使用定义推导球、柱坐标系下散度，也可使用上一节得到的 ∇ 算符。
如向量场 Â 的散度在柱坐标系下的表达式为：

• 一般正交曲线系:

(1)梯度: ∇ =
1

h1

∂

∂u1
e1 +

1

h2

∂

∂u2
e2 +

1

h3

∂

∂u3
e3

(2)散度: ∇ ·A =
1

h1h2h3

[
∂(A1h2h3)

∂u1
+
∂(A2h3h1)

∂u2
+
∂(A3h1h2)

∂u3

]
(3)旋度: ∇×A =

1

h2h3

[
∂(A3h3)

∂u2
− ∂(A2h2)

∂u3

]
e1

+
1

h3h1

[
∂(A1h1)

∂u3
− ∂(A3h3)

∂u1

]
e2

+
1

h1h2

[
∂(A2h2)

∂u1
− ∂(A1h1)

∂u2

]
e3

(4)Laplace 算符: ∇2 =
1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂

∂u1

)
+

∂

∂u2

(
h3h1
h2

∂

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂

∂u3

)]
• 柱坐标 (ρ, θ, φ)

(1) 梯度:

∇ =
∂

∂ρ
eρ +

1

ρ

∂

∂θ
eθ +

1

ρ sin θ
∂

∂φ
eφ

(2) 散度:

∇ ·A =
1

ρ2 sin θ

[
∂

∂ρ
(ρ2 sin θAρ) +

∂

∂θ
(ρ sin θAθ) +

∂

∂φ
(ρAφ)

]
(3) 旋度:

∇×A =
1

ρ2 sin θ

[
∂

∂θ
(ρ sin θAφ)−

∂

∂φ
(ρAθ)

]
eρ

+
1

ρ sin θ

[
∂

∂φ
Aρ −

∂

∂ρ
(ρ sin θAφ)

]
eθ

+
1

ρ

[
∂

∂ρ
(ρAθ)−

∂

∂θ
Aρ

]
eφ

(4) Laplace 算符:

∇2 =
1

ρ2 sin θ

[
∂

∂ρ

(
ρ2 sin θ ∂

∂ρ

)
+

∂

∂θ

(
sin θ ∂

∂θ

)
+

1

sin θ
∂2

∂φ2

]
• 球坐标 (r, θ, φ)

(1) 梯度:

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r sin θ
∂

∂φ
eφ

(2) 散度:

∇ ·A =
1

r2 sin θ

[
∂

∂r
(Arr

2 sin θ) + ∂

∂θ
(Aθr sin θ) + ∂

∂φ
(Aφr)

]
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(3) 旋度:

∇×A =
1

r2 sin θ

[
∂

∂θ
(r sin θAφ)−

∂

∂φ
(rAθ)

]
er

+
1

r sin θ

[
∂

∂φ
Ar −

∂

∂r
(r sin θAφ)

]
eθ

+
1

r

[
∂

∂r
(rAθ)−

∂

∂θ
Ar

]
eφ

(4) Laplace 算符:

∇2 =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ ∂

∂r

)
+

∂

∂θ

(
sin θ ∂

∂θ

)
+

1

sin θ
∂2

∂φ2

]

1.3 线性空间

1.3.1 线性空间

Definition 1.3.1 线性空间
线性空间是 R3 空间的推广，又称向量空间或线性流形 (linear manifold)。其满足如下八条规则：

1. 零元：φ+ 0 = φ

2. 负元：φ+ (−φ) = 0

3. 单位元：1φ = φ

4. 加法交换律：φ1 + φ2 = φ2 + φ1

5. 加法结合律：(φ1 + φ2) + φ3 = φ1 + (φ2 + φ3)

6. 加法分配律：k(φ1 + φ2) = kφ1 + kφ2

7. 数乘结合律：(kl)φ = k(lφ)

8. 数乘分配律：(k + l)φ = kφ+ lφ

Definition 1.3.2 线性空间的维数 线性空间 L 中最大无关组的数目 n，记为 dimL = n.

Definition 1.3.3 线性空间的内积 对于数域 K 和线性空间 L, 内积为一个映射。

⟨·, ·⟩:L× L→ K

其满足:
1. 共轭对称：⟨φ,ψ⟩ = ⟨ψ,φ⟩∗* 表示复共轭.
2. 对第二个元素线性：∀a ∈ K,ψ, χ ∈ L,

⟨φ, aψ⟩ = a⟨φ,ψ⟩

⟨aφ, ψ⟩ = a∗⟨φ,ψ⟩

3. 非负性：⟨φ,φ⟩ ⩾ 0

Definition 1.3.4 向量的正交
⟨φ,ψ⟩ = 0

15



1.3 线性空间 第一章 线性空间及线性算子

Definition 1.3.5 向量的模

|φ| = ⟨φ,φ⟩ 1
2 = (ξ∗i ξi)

1
2 =

(
n∑
i=1

|ξi|2
) 1

2

Definition 1.3.6 向量的归一化
φ̃ =

φ

|φ|

Definition 1.3.7 正交归一基的完备性
对于线性空间 L 上的正交归一基 {φi}, 如果有 L 上的向量 ψ 对所有的基向量 φi 都有 ⟨ψ,φi⟩ = 0

, 满足此关系的 ψ 当且仅当 ψ = 0 才成立，则我们称这一正交归一基 {φi} 是完备的.

Theorem 1.3.1
(
Gram-Schmidt 正交化规则)n 维线性空间L 任意n 个线性无关的向量{φi}, 可用此规

)
则构造出 n 个正交归一的向量 {φ̃i} :

φ̃i =
φi − ⟨φ̃1, φi⟩φ̃1 − · · · ⟨φ̃i−1, φi⟩φ̃i−1

|φi − ⟨φ̃1, φi⟩φ̃1 − · · · ⟨φ̃i−1, φi⟩φ̃i−1|

Definition 1.3.8 我们称具有内积的线性空间为内积空间. 具有内积的实线性空间即实内积空间称
为欧几里得 (Euclidean) 空间，简称欧氏空间. 具有内积的复线性空间即复内积空间称为酉空间
(UnitarySpace).

1.3.2 Hilbert 空间

Definition 1.3.9 Hilbert 空间 完备的内积空间称为 Hilbert 空间，记为 H◦

Definition 1.3.10 Hilbert 空间的内积

⟨φ, χ⟩ =
ˆ
Ω

φ∗(x)χ(x)dx

Definition 1.3.11 Hilbert 空间的模

| φ |= ⟨φ,φ⟩ 1
2 =

(ˆ
Ω

φ∗φdx
) 1

2

<∞

Definition 1.3.12 Hilbert 空间的完备性理论

通常称 Hilbert 空间是平方可积的空间，记为 L2 空间. 当我们在 H 中选定正交归一的基 {φi, i =
1, 2, · · · , n}, n 可以是 ∞ , 即无穷维的线性空间，对任何一个 φ ∈ H, 可以在 {φi} 上展开 φ = ξiφi,
引入符号 |φ(x)⟩ 代表 H 中的向量，在 {φi} 中表示.

| φ(x)⟩ =



ξ1

ξ2

...

ξn


是 n 维空间中的列向量.
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记 ⟨φ(x)| ≡ (| φ(x)⟩)+, 即 | φ(x)⟩ 的复共轭加上转置，称为 | φ(x)⟩ 的 Hermite(厄米) 共轭，是
n 维空间中的行向量.

⟨φ(x) |= (ξ∗1 , ξ
∗
2 , · · · , ξ∗n)

可得向量 | φ(x)⟩ 的模长为

| φ |=
√
⟨φ | φ⟩ =

(
n∑
i=1

ξ∗i ξi

) 1
2

=

(
n∑
i=1

| ξi |2
) 1

2

对归一化的基向量 | φi⟩, 此基向量的完备性可由下式表示
n∑
i=1

| φi⟩⟨φi |= 1

等式左边为 n 个 n× n 的矩阵之和, 右边为该 n 维 Hilbert 空间中的单位矩阵，基的这一完备
性表达式在量子理论中经常被用到.

1.3.3 线性算符

1. 坐标变换 A :

χ = Aφ

2. 微分算符 D,∇,∇2 :

Dxφ(x) =
d

dxφ(x)

3. 对称算符和反对称算符:
S =

1

2
(B + B̃)

A =
1

2
(B − B̃)

B = S +A

4. 伴随算符 A† :

⟨Aφ,χ⟩ = ⟨φ,A†χ⟩

5. 厄米算符：自伴算符
A† = A

6. 幺正算符
U †U = I

1.3.4 线性算符的特征值和特征向量

1. 特征方程：
Aφ = λφ

2. 可以化为：
(λI −A)φ = 0

3. 这个齐次线性方程组有非零解的条件为:

|λI −A| = 0

• 厄米算符的特征值是实数。

• 厄米算符的不同特征值的特征向量正交。
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